资源类型

期刊论文 87

年份

2023 9

2022 15

2021 5

2020 8

2019 2

2018 6

2017 2

2016 2

2015 6

2014 4

2011 2

2010 2

2009 8

2008 2

2006 3

2005 4

2003 1

2002 3

2000 2

展开 ︾

关键词

界面 4

乳液 2

应力波 2

消失波 2

胶体 2

/III-V界面 1

ACE2 1

GH位移 1

Maxwell方程组 1

NASICON 1

Proca方程组 1

SARS-CoV-2 1

WBS矩阵 1

一维应力波 1

一维材料 1

三相界面 1

主-客体化学 1

主动源面波 1

交互反馈 1

展开 ︾

检索范围:

排序: 展示方式:

Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer

Bing LI,Xu GENG,Tong LU,Lei QIANG,Minghang LI

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 380-391 doi: 10.1007/s11465-015-0365-7

摘要:

The interface wave traveling along the boundary of two materials has been studied for nearly a century. However, experiments, engineering applications, and interface wave applications to the non-destructive inspection of interlaminar composite have developed slowly. In this research, an experiment that applies Stoneley waves (a type of interfacial wave between two solid half-spaces) is implemented to detect the damage in a multilayer structure. The feasibility of this method is also verified. First, the wave velocity and wave structure of Stoneley waves at a perfectly bonded aluminum-steel interface are obtained by solving the Stoneley wave dispersion equation of two elastic half-spaces. Thereafter, an experiment is conducted to measure the Stoneley wave velocity of an aluminum-steel laminated beam and to locate interlaminar cracks by referring to the Stoneley wave velocity and echo wave time. Results indicate that the location error is less than 2%. Therefore, Stoneley waves show great potential as a non-destructive inspection method of a multilayer structure.

关键词: crack localization     interface waves     Stoneley waves     interlaminar damage     multilayer structure    

Dynamics simulation of bottom high-sediment sea water movement under waves

Xueyi YOU , Wei LIU , Houpeng XIAO ,

《结构与土木工程前沿(英文)》 2009年 第3卷 第3期   页码 312-315 doi: 10.1007/s11709-009-0037-y

摘要: The movement of bottom high-sediment sea water under water waves, especially that of the high-sediment water layer close to the sea bottom, is important to the resuspension and settlement of sediment. Supposing that the high-sediment sea water is a Newtonian fluid, based on Navier-Stokes (N-S) theory, the movement of the interfaces of air-water and water-sediment water was tracked by the volume of fluid (VOF) method. The velocity field of sediment water was simulated by considering the effect of water waves. The results show that the movement of sediment water is very different from that of sea water, which provides a solid basis for understanding the resuspension and settlement of sediment and the formation of bottom stripe, and the VOF method can trace the movement of the two interfaces simultaneously; the movement of the air-water interface has a strong effect on that of the water-sediment water interface, while the effect of the water-sediment water interface movement on the air-water interface is not obvious.

关键词: volume of fluid (VOF) method     high sediment sea water     numerical simulation     interface trace     Navier-Stokes (N-S) theory    

Effect of interface adhesion factor on the bearing capacity of strip footing placed on cohesive soil

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1494-1503 doi: 10.1007/s11709-021-0768-y

摘要: The problem related to bearing capacity of footing either on pure soil or on pure rock mass has been investigated over the years. Currently, no study deals with the bearing capacity of strip footing on a cohesive soil layer overlying rock mass. Therefore, by implementing the lower bound finite element limit analysis in conjunction with the second-order cone programming and the power cone programming, the ultimate bearing capacity of a strip footing located on a cohesive soil overlying rock mass is determined in this study. By considering the different values of interface adhesion factor (αcr) between the cohesive soil and rock mass, the ultimate bearing capacity of strip footing is expressed in terms of influence factor (If) for different values of cohesive soil layer cover ratio (Tcs/B). The failure of cohesive soil is modeled by using Mohr−Coulomb yield criterion, whereas Generalized Hoek−Brown yield criterion is utilized to model the rock mass at failure. The variations ofIf with different magnitudes of αcr are studied by considering the influence of the rock mass strength parameters of beneath rock mass layer. To examine stress distribution at different depths, failure patterns are also plotted.

关键词: bearing capacity     soil-rock interface     Hoek−Brown yield criterion     plasticity     limit analysis    

A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 10-24 doi: 10.1007/s11709-022-0904-3

摘要: A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves. The free-field responses are first obtained using the stiffness matrix method based on plane-wave assumptions. Then, the domain reduction method was employed to reproduce the wavefield in the numerical model of the soil–structure system. The proposed numerical framework was verified by providing comparisons with analytical solutions for cases involving free-field responses of homogeneous ground, layered ground, and pressure-dependent heterogeneous ground, as well as for an example of a soil–structure interaction simulation. Compared with the viscous and viscous-spring boundary methods adopted in previous studies, the proposed framework exhibits the advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground. Numerical results show that SV-waves are more destructive to underground structures than P-waves, and the responses of underground structures are significantly affected by the incident angles.

关键词: underground structures     seismic response     stiffness matrix method     domain reduction method     P-SV waves    

Multi-objective optimization of surface texture for the slipperswash plate interface in EHA pumps

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0704-4

摘要: Well-designed surface textures can improve the tribological properties and the efficiency of the electro-hydrostatic actuator (EHA) pump under high-speed and high-pressure conditions. This study proposes a multi-objective optimization model to obtain the arbitrarily surface textures design of the slipper/swash plate interface for improving the mechanical and volumetric efficiency of the EHA pump. The model is composed of the lubrication film model, the component dynamic model considering the spinning motion, and the multi-objective optimization model. In this way, the arbitrary-shaped surface texture with the best comprehensive effect in the EHA pump is achieved and its positive effects in the EHA pump prototype are verified. Experimental results show a reduction in wear and an improvement in mechanical and volumetric efficiency by 1.4% and 0.8%, respectively, with the textured swash plate compared with the untextured one.

关键词: electro-hydrostatic actuator     axial piston pump     slipper/swash plate interface     multi-objective optimization     surface texture    

Thermal analysis of lubricated three-dimensional contact bodies considering interface roughness

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0672-8

摘要: Surface roughness and thermal action are of remarkable importance in the lubrication performance of mechanical components, especially in extreme conditions. However, available studies mainly focus on the full-film lubrication conditions without considering temperature rise and real 3D surface roughness due to the complexity of surface topography and temperature characteristics. Moreover, studies on the interfacial thermal behaviors of 3D rough surface lubricated contact in an extended range of working conditions remain limited. In this paper, a deterministic mixed thermal elastohydrodynamic lubrication model considering real 3D surface roughness and thermal effects is proposed. In this model, pressure and temperature are coupled with each other, the computation of elastic deformation is accelerated through the discrete convolution and fast Fourier transform method, the temperature field is calculated with the column sweeping technique, and the semi-system method is introduced to improve convergence and numerical stability under severe conditions. The model is validated by comparing its results with available published numerical and experimental results. The thermal behaviors of the contact interface are studied in a wide range of working conditions. The influences of surface roughness and thermal effect on lubrication performance are revealed. The results show that the proposed model can be used as a powerful analysis tool for lubrication performance and temperature prediction in various heavy-load, high-speed lubricated components over a wide range of lubrication conditions.

关键词: thermal elastohydrodynamic lubrication     surface roughness effect     thermal effect     temperature characteristics     severe conditions    

Ribbon bridge in waves based on hydroelasticity theory

Cong WANG, Shixiao FU, Weicheng CUI

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 57-62 doi: 10.1007/s11709-009-0005-6

摘要: For the design and operation of a floating bridge, the understanding of its hydroelastic behavior in waves is of great importance. This paper investigated the hydroelastic performances of a ribbon bridge under wave action. A brief introduction on the estimation of dynamic responses of the floating bridge and the comparisons between the experiments and estimation were presented. Based on the 3D hydroelasticity theory, the hydroelastic behavior of the ribbon bridge modeled by finite element method (FEM) was analyzed by employing the mode superposition method. And the relevant comparisons between the numerical results and experimental data obtained from one tenth scale elastic model test in the ocean basin were made. It is found that the present method is applicable and adaptable for predicting the hydroelastic response of the floating bridge in waves.

关键词: hydroelasticity     ribbon bridge     wave     finite element method (FEM)    

非均质岩体中一维应力波演化过程分析

钟光复,王志亮,李永池

《中国工程科学》 2006年 第8卷 第5期   页码 58-62

摘要:

地下球形药包爆轰后将产生很强的地震波,其传播受到多种因素的影响。把岩石介质的弹塑性帽盖模型耦合到有限差分法程序中,对一维爆轰波在非均质岩石体中的传播、演化机理进行了数值模拟与分析;着重探讨了一维应力波从“硬”岩石层进入“软”岩石层、从“软”岩石层进入“硬”岩石层时,波在形状和强度等方面的变化规律;同时探讨了岩石介质中存在的“软弱夹层”对一维应力波传播的影响。

关键词: 岩石介质     一维应力波     帽盖模型     传播与演化    

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0733-z

摘要: Carbon group nanofluids can further improve the friction-reducing and anti-wear properties of minimum quantity lubrication (MQL). However, the formation mechanism of lubrication films generated by carbon group nanofluids on MQL grinding interfaces is not fully revealed due to lack of sufficient evidence. Here, molecular dynamic simulations for the abrasive grain/workpiece interface were conducted under nanofluid MQL, MQL, and dry grinding conditions. Three kinds of carbon group nanoparticles, i.e., nanodiamond (ND), carbon nanotube (CNT), and graphene nanosheet (GN), were taken as representative specimens. The [BMIM]BF4 ionic liquid was used as base fluid. The materials used as workpiece and abrasive grain were the single-crystal Ni–Fe–Cr series of Ni-based alloy and single-crystal cubic boron nitride (CBN), respectively. Tangential grinding force was used to evaluate the lubrication performance under the grinding conditions. The abrasive grain/workpiece contact states under the different grinding conditions were compared to reveal the formation mechanism of the lubrication film. Investigations showed the formation of a boundary lubrication film on the abrasive grain/workpiece interface under the MQL condition, with the ionic liquid molecules absorbing in the groove-like fractures on the grain wear’s flat face. The boundary lubrication film underwent a friction-reducing effect by reducing the abrasive grain/workpiece contact area. Under the nanofluid MQL condition, the carbon group nanoparticles further enhanced the tribological performance of the MQL technique that had benefited from their corresponding tribological behaviors on the abrasive grain/workpiece interface. The behaviors involved the rolling effect of ND, the rolling and sliding effects of CNT, and the interlayer shear effect of GN. Compared with the findings under the MQL condition, the tangential grinding forces could be further reduced by 8.5%, 12.0%, and 14.1% under the diamond, CNT, and graphene nanofluid MQL conditions, respectively.

关键词: grinding     minimum quantity lubrication     carbon group nanofluid     tribological mechanism    

Soil seismic analysis for 2D oblique incident waves using exact free-field responses by frequency-based

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1530-1551 doi: 10.1007/s11709-022-0900-7

摘要: The seismic analysis of a viscoelastic half-space under two-dimensional (2D) oblique incident waves is carried out by the finite/infinite element method (FIEM). First, the frequency-domain exact solutions for the displacements and stresses of the free field are derived in general form for arbitrary incident P and SV waves. With the present formulation, no distinction needs to be made for SV waves with over-critical incident angles that make the reflected P waves disappear, while no critical angle exists for P waves. Next, the equivalent seismic forces of the earthquake (Taft Earthquake 1952) imposed on the near-field boundary are generated by combining the solutions for unit ground accelerations with the earthquake spectrum. Based on the asymmetric finite/infinite element model, the frequency-domain motion equations for seismic analysis are presented with the key parameters selected. The results obtained in frequency and time domain are verified against those of Wolf’s, Luco and de Barros’ and for inversely computed ground motions. The parametric study indicated that distinct phase difference exists between the horizontal and vertical responses for SV waves with over-critical incident angles, but not for under-critical incident angles. Other observations were also made for the numerical results inside the text.

关键词: oblique incident waves     critical angle     half-space     finite/infinite element approach     seismic response analysis    

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface

Jun WU,Xuemei LIU

《结构与土木工程前沿(英文)》 2015年 第9卷 第3期   页码 323-340 doi: 10.1007/s11709-015-0301-2

摘要: This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.

关键词: high strength concrete (SHS)     engineered cementitious composite     interface     blast test     strain rate effect    

Recent advances in “universal” influenza virus antibodies: the rise of a hidden trimeric interface in

Yulu Wang, Dan Hu, Yanling Wu, Tianlei Ying

《医学前沿(英文)》 2020年 第14卷 第2期   页码 149-159 doi: 10.1007/s11684-020-0764-y

摘要: Influenza causes seasonal outbreaks yearly and unpredictable pandemics with high morbidity and mortality rates. Despite significant efforts to address influenza, it remains a major threat to human public health. This issue is partially due to the lack of antiviral drugs with potent antiviral activity and broad reactivity against all influenza virus strains and the rapid emergence of drug-resistant variants. Moreover, designing a universal influenza vaccine that is sufficiently immunogenic to induce universal antibodies is difficult. Some novel epitopes hidden in the hemagglutinin (HA) trimeric interface have been discovered recently, and a number of antibodies targeting these epitopes have been found to be capable of neutralizing a broad range of influenza isolates. These findings may have important implications for the development of universal influenza vaccines and antiviral drugs. In this review, we focused on the antibodies targeting these newly discovered epitopes in the HA domain of the influenza virus to promote the development of universal anti-influenza antibodies or vaccines and extend the discovery to other viruses with similar conformational changes in envelope proteins.

关键词: influenza virus     neutralizing antibody     hemagglutinin     globular head region     trimeric interface    

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 158-168 doi: 10.1007/s11709-016-0374-6

摘要: A push-out test program was designed and conducted to study the meso-scale behavior of mortar-aggregate interface for concrete after elevated temperatures ranging from 20°C to 600°C with the concept of modeled concrete (MC) and modeled recycled aggregate concrete (MRAC). The MCs and MRACs were designed with different strength grade of mortar and were exposed to different elevated temperatures. Following that the specimens were cooled to room temperature and push-out tests were conducted. Failure process and mechanical behaviors were analyzed based on failure modes, residual load-displacement curves, residual peak loads and peak displacements. It is found that failure modes significantly depended on specimen type, the elevated temperature and the strength grade of mortar. For MC, major cracks started to propagate along the initial cracks caused by elevated temperatures at about 80% of residual peak load. For MRAC, the cracks appeared at a lower level of load with the increasing elevated temperatures. The cracks connected with each other, formed a failure face and the specimens were split into several parts suddenly when reaching the residual peak load. Residual load-displacement curves of different specimens had similarities in shape. Besides, effect of temperatures and strength grade of mortar on residual peak load and peak displacement were analyzed. For MC and MRAC with higher strength of new hardened mortar, the residual peak load kept constant when the temperature is lower than 400°C and dropped by 43.5% on average at 600°C. For MRAC with lower strength of new hardened mortar, the residual peak load began to reduce when the temperatures exceeded 200°C and reduced by 27.4% and 60.8% respectively at 400°C and 600°C. The properties of recycled aggregate concrete (RAC) may be more sensitive to elevated temperatures than those of natural aggregate concrete (NAC) due to the fact that the interfacial properties of RAC are lower than those of NAC, and are deteriorated at lower temperatures.

关键词: mortar-aggregate interface     push-out test     elevated temperatures     modeled concrete (MC)     modeled recycled aggregate concrete (MRAC)    

Propagation characteristics of transient waves in low-strain integrity testing on cast-in-situ concrete

Hanlong LIU, Xuanming DING

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 240-240 doi: 10.1007/s11709-009-0100-8

利用人工源超低频电磁波监测地震的试验与分析

赵国泽,陆建勋

《中国工程科学》 2003年 第5卷 第10期   页码 27-33

摘要:

由人工产生大功率超低频(SLF)电磁波可以在地面很大范围的许多测点同时测量该信号,利用它可以研究地下电阻率结构和空间电磁场;研究地震等引起的电磁场异常变化;探测地壳结构和地下资源,具有广阔的应用前景和发展潜力。在北京等地区的观测表明,SLF信号的功率谱密度超过天然场源信号数倍以上,所得到的视电阻率数据精度远高于天然源方法,并有长时间的稳定性。在试验测量期间距测点约120 km发生的迁安4.2级地震与观测的电磁场异常和视电阻率的变化有较好的对应性,对产生这些变化的可能的成因机制进行了分析和探讨。

关键词: 超低频/极低频电磁波     电磁异常     电阻率     地震监测    

标题 作者 时间 类型 操作

Experimental verification of the interface wave method to detect interlaminar damage of a metal multilayer

Bing LI,Xu GENG,Tong LU,Lei QIANG,Minghang LI

期刊论文

Dynamics simulation of bottom high-sediment sea water movement under waves

Xueyi YOU , Wei LIU , Houpeng XIAO ,

期刊论文

Effect of interface adhesion factor on the bearing capacity of strip footing placed on cohesive soil

期刊论文

A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness

期刊论文

Multi-objective optimization of surface texture for the slipperswash plate interface in EHA pumps

期刊论文

Thermal analysis of lubricated three-dimensional contact bodies considering interface roughness

期刊论文

Ribbon bridge in waves based on hydroelasticity theory

Cong WANG, Shixiao FU, Weicheng CUI

期刊论文

非均质岩体中一维应力波演化过程分析

钟光复,王志亮,李永池

期刊论文

Tribological mechanism of carbon group nanofluids on grinding interface under minimum quantity lubrication

期刊论文

Soil seismic analysis for 2D oblique incident waves using exact free-field responses by frequency-based

期刊论文

Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface

Jun WU,Xuemei LIU

期刊论文

Recent advances in “universal” influenza virus antibodies: the rise of a hidden trimeric interface in

Yulu Wang, Dan Hu, Yanling Wu, Tianlei Ying

期刊论文

Experimental study on behavior of mortar-aggregate interface after elevated temperatures

Wan WANG, Jianzhuang XIAO, Shiying XU, Chunhui WANG

期刊论文

Propagation characteristics of transient waves in low-strain integrity testing on cast-in-situ concrete

Hanlong LIU, Xuanming DING

期刊论文

利用人工源超低频电磁波监测地震的试验与分析

赵国泽,陆建勋

期刊论文